“THIS IS A HELLUVA REPORT, PHIL,“ GENERAL TRUDEAU SAID, looking up from the paper clipped sheaf of typewritten sheets I’d handed him first thing that morning. I’d been waiting at my desk since before six when I got back to the Pentagon, taking looks outside the building every once in a while as the bright orange reflection of the rising sun that exploded in a distant window and looked as if it had caught fire.
“What’d you do, stay up all night writing it?”
“I put in some work after hours,“ I said. “I don’t want to spend too much time in the nut file when people are supposed to be working.“
The general laughed as he fingered through the paperwork, but you could see he was impressed. As much as I wanted to denigrate the Roswell file in front of him as a bunch of drawers full of stuff that people would put me away for, we both knew that it contained much of the future of our R&D.
Military
research and development agencies were under growing pressure from
the Congress to put some success points on the scoreboard or get out
of the rocket launching business for good. Early failures to lift off
the navy’s WAC Corporal and the army Redstone had made laughing
stocks out of the American rocket program while the Soviets were
showing off their success like basketball players on fancy lay-ups
right across the court. The army’s Project
Horizon moon base project
was sitting in its own file cabinet gathering dust. And there was
also a growing concern among the military that we’d be pushed into
taking over the failed French mission in Indochina to keep the
Vietcong, Pathet Lao, and Khmer Rouge from making the whole area
Communist. It was a war we could not win but that would drain our
resources from the real battle front in Eastern Europe.
So,
even more than scoring some field goals, General
Trudeau
needed projects going into development to keep the civilian agencies
from cutting us back and diverting our resources. Now my boss held my
first report in his hands and knew that our strategic plan had some
rational grounding. He pushed for a tactical plan.
“We
know what we want to do, “ he said. “Now, how do we do it?”
“I’ve been thinking about that, too, General, “ I said.
“And here’s how I’d like to start. “
I explained that I wanted to compile a list of all our technical human resources, like the rocket scientists from Germany then still working at Alamogordo and White Sands. I’d met more than my share of our rocket fuel and guidance specialists in the guided missile program during my years at Red Canyon in command of the Nike battalion.
But we were working with theoretical scientists as well, men with experience who could combine the cold precision of an engineer with the speculative vision of a free thinker. These were the people I wanted to assemble into a brain trust, people I could talk to about strange artifacts and devices that had no basis in earthly reality. They were the scientists who could tell me what the potential was in items like wafer shaped plywood thin pieces of silicon with mysterious silver etchings on them.
“And
once you have this brain trust, “ General Trudeau asked, “then
what?”
“Match them up with technologies, “ I said. I
admitted that we were flying blind on much of the material that we
had.
We couldn’t go out to the general scientific and academic communities to ask them what we had because we would very quickly lose control of our own secrets. Besides, a lot of it had to do with weaponry, and there were very strict rules on what we could and could not disclose without the appropriate clearances. But our brain trust would be invaluable. And, with the proper orientation and security checks, they would keep our secrets, too, just as they had since the end of World War II.
“Which
of the scientists do you have in mind?” Trudeau asked, taking out
the little black leather covered notepad he kept in his inside
pocket.
“I was thinking of Robert Sarbacher, “ I said.
“Wernher vonBraun, of course. Hans Kohler. Hermann Oberth. John von
Neumann. “
“How much do they know about Roswell?”
Trudeau wanted to know. If they’d been consulted on the Roswell material back in1947, as I knew Wernher von Braun had been by General Twining, then we weren’t revealing any secrets. If they had never been informed about the crash, then we were going out on a limb by sharing information that was still classified above top secret. General Trudeau needed to know how dangerous it was to bring these scientists into the loop.
But I assured him that all of them knew something about Roswell because of their connection with the Research and Development Board. During the Eisenhower administration information about the classified research and data collection projects into extraterrestrials was routinely filtered to the Office of Research and Development because the head of the Research and Development Board had been one of the original members of the group.
“I
was at the White House when Sarbacher was on the board, General, “
I told my boss. “So I can be pretty sure he was in the know. And
Hermann Oberth, “ I admitted to Trudeau. “He already told me that
he believed that the objects we saw popping up on our radar screens
at Red Canyon and then disappearing as if they were never there were
probably the same kinds of extraterrestrial aircraft that we picked
up at Roswell. So he knew, but I don’t know how. “
“Well,
that’s good news, at least, “ the general said. “I’d rather
not be the one authorizing the release of classified information to
anyone who didn’t know it before hand. And I don’t want to put
you in the position, Phil, of having to explain to any higher ups why
you decided to release top secret information to people without
clearances, even in the interest of national security. “
I appreciated that, but for our plan to work, we needed the technical and scientific expertise people like von Braun, Oberth, and Sarbacher could bring to any reverse engineering and product development strategies.
"Will
you approach them?” Trudeau asked.
“We’ll have to begin
by taking an inventory of all of the defense industry contracts we’re
currently managing, General, “ I said. “Lineup the contracts and
systems we’re developing with the materials in the nut file to see
where they fit in. Then bring in the scientists to consult on making
sure we know what we think we have, that is, if they can figure out
what we have. “
“Let’s go through a potential product
list first, “ the general suggested. “Then see where our
contracts line up and where the scientists can help. And you know
what happens then, “ Trudeau asked.
I wasn’t sure where he
was going to take this.
“We’re sticking you back in
civilian clothes and sending you on the road to visit our friends in
these defense contractors. “
“I don’t even get to keep my
battle ribbons, “ I joked.
“I don’t want anyone to know,
“ General Trudeau explained, “that some lieutenant colonel on the
CIA’s Most Wanted list is traveling to our biggest defense
contractors with a mysterious briefcase full of nobody knows what.
You might as well wear a sign, “ he laughed. “We have to get to
work on that list. “
That same afternoon I went back to my report on the EBE and his craft and began to list the riddles it contained and the opportunities for the discovery of product it presented to us. The entire event was like an enigma to us because every conventional requirement one would expect to have found at the crash site, in the craft, or even in the EBEs themselves was missing.
Where
was the engine or the power supply for the craft? It had neither jet
engines nor propellers. It had no rocket propulsion like the V2
missiles, nor did it carry any fuel. At Norton Air Force Base, where
the craft eventually was hangared, engineers marveled at the thin
amalgam of the most refined copper and purest silver they had ever
seen that covered the ship’s underside. The metal was remarkable
for its conductivity, as if the entire craft was an electrical
circuit offering no resistance to the flow of current.
Yet it was something our military engineers could not replicate. By the 1950s at Norton Air Force Base, at least two prototypes of the alien craft had been fabricated, but neither had the power source of the craft that had crashed. In its stead were crude attempts at nuclear fission generators, but they were ineffective and dangerous. Even the portable nuclear generators that would power the primitive Soviet and American satellites in the 1960s were insufficient for the needs of the replicated spacecraft. So the question remained, what powered the Roswell spacecraft?
I
reviewed all of my discoveries in a checklist:
The crescent shaped space vehicle also had no traditional navigational controls as we understood them.
There were no control sticks, wheels, throttles, pedals, cables, flaps, or rudders.
How did the creatures pilot this ship and how did they control the speed, accelerating from a near stationary hover above a given spot, like a helicopter, to speeds in excess of seven thousand miles per hour in a matter of seconds?
What protected the creatures from the tremendous g-forces they would have had to have pulled in any conventional aircraft?
Our own pilots in World War II had to wear special devices as they pulled up out of dives that kept the oxygen from flowing out of their brains and causing them to blackout. But we found nothing in the flight suits of the creatures that indicated that they faced the same problem. Yet their craft should have pulled ten times the g-forces our own pilots did, so we couldn’t figure out how they managed this. No controls, no protection, no power supply, no fuel: these were the riddles I listed.
Along side them I listed that:
• The
craft itself was an electrical circuit.
• That the flight
suits - “flight skins” is a better description - the creatures
wore were made of a substance whose atomic structure was elongated,
strengthened lengthwise, so as to provide a directional flow to any
current applied to it.
The engineers who first discovered this were amazed at the pure conductivity of these skins, functionally like the skin of the craft itself, and their obvious ability to protect the wearer while at the same time vectoring some kind of electronic field.
Where was the physical junction of the circuit between the pilot and the ship? Was it turned on and off somehow by the pilot himself through a switch we didn’t know about?
Alongside
the riddle of the apparent absence of navigational controls I listed
the sensorized headband that so intrigued the officers at Roswell’s
Walker Field and fascinated me as well. If, as we all suspected, this
device picked up the electronic signatures from the creatures’
oversized brains, what did it do with them? I believed - and our
industrial product development from the 1960s through today as the
brain wave control helmets finally came into service ultimately
confirmed - that these headbands translated the brain’s electronic
signals into system commands that controlled speed, direction, and
elevation.
Maybe the headbands had to be calibrated or tuned to each individual pilot, or maybe the pilots - since I believed they were genetically engineered beings biologically manufactured especially for flight or long term exploration had to be calibrated to the headband. Either way, the headbands were the interface between the pilot and the ship. But that still didn’t resolve the question of the lack of cables, gears, or wires.
Maybe
the answer lay not in the lack of structural controls but in the way
the suit, the headband, the creatures’ brains, and the entire craft
worked together. In other words, when I looked at the possible
function of the entire system, the synchronicity between the brain
interface in the headband, the pure conductivity of the spacecraft,
and the elongated structure of the space skins, which also acted like
a circuit, I could see how directional instructions could have been
translated by the headbands into some form of current flowing through
the skins and into the series of raised deck panels where there were
indentations for the creatures’ hands.
The indentations on these panels, as the Roswell field reports described them, looked like the handprints pressed into the concrete at the old Grauman’s Chinese Theater in Hollywood. Were the directional commands a series of electronic instructions transmitted directly from the creatures’ brains along their bodies and through the panels into the ship itself as if the ship were only an extension of the creature’s body? For that to have been the case, something was still missing. The engine.
Again,
I settled on the idea of function over structure. The debris and the
spacecraft indicated that an engine didn’t somehow fall out of the
craft when it crashed. A conventional engine was never there in the
first place. What we found was that the craft seemed to have had the
ability to store as well as conduct a vast amount of current. What if
the craft itself were the engine, imparted with a steady current from
another source that it stored as if it were a giant capacitor? This
would be like charging the battery in an electric car and running it
until the battery was drained. Sound far fetched?
It’s not much different from filling up a car with gas at the pump and driving until the tank’s dry, or fueling a plane and making sure you land before the fuel’s gone. I suspected the Roswell craft was simply a capacitor that stored current that was controlled or vectored by the pilot and was able to be recharged in some way or could recharge itself with some form of built in generator.
That
would have explained the power supply, I noted along side the riddle
of the missing engine, but what was the means of propulsion and
direction? If there was a force that functioned the same way thrust
does, it wasn’t immediately obvious how it was created and
vectored. As early as September 1947, scientists who had gone to the
Air Materiel Command at Wright Field to see the debris were
speculating that the electronic potential of the Roswell craft
reminded them of the German and British antigravity experiments of
the 1920s and 1930s.
General Twining was reported to have said more than once that the name of the Serbian electrical engineer and inventor of alternating current, Nikola Tesla, kept bubbling up in the conversation because the scientists examining the damaged craft described the way it must have converted an electromagnetic field into an antigravity field. And, of course, the craft itself reminded them of the German experimental fighter aircraft that made their appearance near the end of the war but that had been in development ever since the 1930s.
Tesla
and a number of other European scientists had been pioneers in the
conversion of circumscribed small area antigravity fields out of
electromagnetic fields. However, the effort to develop true
antigravity aircraft never came to fruition among conventional
aircraft manufacturers because gasoline, jet, and rocket engines
provided a perfectly good weapons technology. But the theory of
electromagnetic antigravity propulsion was not unknown even if it was
not well understood and, without a power source like a small portable
nuclear fission generator, not at all feasible. But, what if the
flying craft already carried enough electric potential and storage
capacity to retain its power, just like a very advanced flying
battery?
Then it might have all the power it needed to propagate and vector a wave directionally by shifting its magnetic poles. If the magnetic field theory experiments carried out by engineers and electrical energy pioneers Paul Biefeld and Townsend Brown in the 1920s at the California Institute for Advanced Studies were accurately reported - and the U.S. military as well as scientific record keepers at the Bureau of Investigation kept very close tabs on what these engineers were doing - then the technological theory for antigravity flight existed before World War II.
In
fact, prototypes for vertical takeoff and landing disk shaped
aircraft had been on the drawing boards at the California Institute
since before the war. It was just that in the United States nobody
paid them much attention. The Germans did develop and had flown
flying disks, or so the intelligence reports read, even though they
had no impact on the outcome of the war other than stimulating a race
between the United States and the USSR to gather as much of the
German technology as possible.
Thus, even though engineers had attempted to build vertical takeoff and flying wing aircraft before and had succeeded, the Roswell spacecraft, because it was so truly functional and outflew anything we had - as well as traveled in space - represented a practical technological challenge to the scientists visiting the Air Materiel Command. We knew what the EBEs did, we just couldn’t duplicate how. My reports for Army R&D were analyses of the types of technology that we had to develop to either challenge this spacecraft militarily with a credible defense or build one ourselves.
In
my notes to General Trudeau, I reviewed for him all the technological
implications that I believed were relevant in any discussion about
what could be harvested from the Roswell craft. I also wrote up what
I understood about the magnetic field technology and how
unconventional designers and engineers had drafted prototypes for
these “antigravs” earlier in the century. All of this pointed in
one direction, I suggested : that we now had a craft and could farm
out to industry the components that comprised this electromagnetic
antigravity drive and brain wave directed navigational controls. We
had to dole them out piece meal once we broke them down into
developable units, each of which could have its own engineering
track.
For that we’d need the advice of the scientists who would eventually comprise our brain trust, individuals we could rely on and whom we could talk to about the Roswell debris. These were scientists who routinely worked with our prime defense contractors and could tell us whom to approach in their R&D divisions for secure and private consultations.
I
was hoping that the evaluation of the kinds of things we were able to
learn from the EBE
and his craft that I was preparing for General
Trudeau
would lead me toward the solution of some of the physiological
problems we knew our astronauts would encounter in space flight. In
the early 1960s, astronauts from both the United States and the USSR
had made their first orbital flights and had experienced more than a
few negative physical symptoms from the weightless environment during
the mission. Despite our official claims that humans could travel
safely in space, our doctors knew that even short periods of
weightlessness were extremely disorienting to some of our astronauts,
and the longer the flight, the more uncomfortable the symptoms could
become. We were worried about loss of physical strength, reduced
muscle capability in the heart and diaphragm, reduction of lung
capacity, and loss of tensile strength in the bones.
Yet,
scattered across the desert floor outside of Roswell were creatures
who seemed completely adapted to space flight. Just to be able to
examine these entities was an enormous opportunity, but I knew we had
the ability to harvest what we could observe about aliens. So, again,
along side the speculations I had made about the EBEs and their craft
I listed what I thought were the major possibilities of developing
product to enable us to travel in space for extended periods of time.
Renewable oxygen and food supplies were obvious directions to take, and by the 1960s, NASA engineers were already designing ways to recharge the atmosphere inside a capsule and provide for food storage. We helped. It was Army R&D and our plan for developing an irradiation process for food that even today provides the basis for non-refrigerated food supplies on board spacecraft. But beyond that were real issues of health and survival. Merely getting human beings into earth orbit or even launching them into lunar orbit and bringing them back safely were straight forward engineering projects. But the readaptation of the human body to earth gravity after an extended period of weightlessness or reduced gravity was a far more intractable problem to solve. The physiology of the EBEs provided an important clue.
Besides the development of super tenacity fibers that would protect the astronauts and the skin of the spacecraft and the development of a food preservation process that would neutralize all the bacteria that cause spoilage, we needed to examine the ways we trained our astronauts physically so that they would be more adaptable to periods of weightlessness and spatial disorientation. At the same time we needed to develop nutritional packages that would not place undue stress on a digestive system that needed to compensate for deprivation of gravity.
Since
there were no food preparation facilities on board the spacecraft, we
didn’t know how they stored or processed food or even what they
ate, if anything at all. However, my concern over a process to
preserve food for space travel was prompted by the obvious challenge
posed by the spacecraft itself. If we were going to travel in space,
and it was clear from what the army found at Roswell that at least
one culture had developed the technology to do so, then R&D had
to find a way to feed our pilots in space. Therefore, we needed to
develop a process to preserve food for space missions that didn’t
require refrigeration facilities and the consumption of excessive
amounts of energy.
The problem of long term space travel
still hasn’t been solved, in part because we continue to rely upon
conventional means of propulsion that subject our astronauts to great
periods of physical stress, especially during takeoff. We also have
no magic way for astronauts to readjust to earth gravity after a long
ride in an orbit in space station like the Russian Mir or our own
planned station early in the next century. Manned trips to Mars, also
on the drawing boards for early in the twenty-first century, will
also be a problem because they will last for months and subject our
astronauts to a great deal of stress.
I
suggested to General Trudeau in my report that although this wasn’t
explicitly an Army R&D mission, NASA
should begin the preparation of astronaut candidates from the time
they’re still in school.
“If we train our astronauts from the time they’re children the same way we do with potential athletes at sports camps and provide the most promising candidates with flight training and military or government scholarships to ROTC colleges, we will create a cadre of officers physically adaptable and scholastically trained to enter the next generation of space travel, “ I wrote.
I know that General Trudeau passed this recommendation along because NASA itself opened a space training camp for future astronauts within a few years after my retirement from the service.
Beyond
the issues concerning the training potential of astronauts for
conventionally powered space flight, the examination of the EBE
bodies and the ship’s possible propulsion system raised other
intriguing questions. What if, in addition to having been
bioengineered for interstellar travel, the EBE’s weren’t
subjected to the kinds of forces human pilots would routinely face?
If the EBEs utilized a wave propagation technology as an antigravity
drive and navigation system, then they traveled inside some form of
adjustable electromagnetic wave. I suggested to General Trudeau that
we should study the potential physiological effects on humans of long
term exposure to the kinds of energy spillage generated by the
propagation of an electromagnetic field.
Biologists needed to determine how feasible such a form of space travel would be based upon whether energy radiation would disrupt the cellular activity of the human body. Perhaps the external one piece skins worn by the EBEs afforded them protection against the effects of being enclosed in a portable electromagnetic field.
Although
Army R&D never conducted these studies because the medical issues
surrounding space travel were subsumed by NASA under contracts with
the military, indirect medical research was conducted years later.
Studies surrounding the physiological effects on persons living near
high voltage power transmission lines and persons using extendable
antenna hand held cellular telephones both proved inconclusive. While
some people argued that there were higher incidences of cancer among
both groups, other studies argued just the opposite or found other
reasons for any incidences of cancer.
I believe that a definitive piece of research on the effects of low energy or ELM wave exposure still needs to be done because, ultimately, even more than atomic energy or ion drives, magnetic field generation will be the system that will propel our near planetary voyages from 2050 through the early twenty second century. Beyond that, for humans to reach destinations beyond the solar system technology will require a radically different form of propulsion that will enable them to reach velocities at or beyond the speed of light.
Thus
did my second report cover the opportunities for research presented
to us by the autopsies of the EBEs and from the crash of their
vehicle. To my mind, it was nothing less than a confirmation that the
research into electromagnetics
in the 1920s and the highly experimental saucer and crescent shaped
development of aircraft by the Allies and Axis powers would have led
to an entirely new generation of airships. I know that my reports
were read by the higher ups in the military because top secret
research has continued right through to the present on a whole range
of designs and propulsion systems from the Stealth fighter and bomber
to prototypes for a very high altitude suborbital interceptor
aircraft, developed at Nellis and Edwards, now on the drawing board,
which can hover in place and fly at speeds over seven thousand miles
per hour.
Once
I finished my report on the opportunities we could possibly derive
from the EBEs and the craft, I turned my attention to compiling a
short list of immediate opportunities I believed achievable by the
Army R&D’s Foreign Technology Division from a reverse
engineering of items retrieved from the crash. These were specific
things, not as theoretical as questions about the physiology of the
EBE or the description of its craft. But, while some might call them
purely mundane, each of these artifacts, as a direct result of Army
R&D’s intervention, helped spawn an entire technological
industry from which came new products and military weapons.
Among
the Roswell artifacts and the questions and issues that arose from
the Roswell crash, on my preliminary list that needed resolution for
development scheduling or simple inquiries to our military scientific
community were:
• Image
intensifiers, which ultimately became “night vision”
•
Fiber optics
• Super-tenacity fibers
• Lasers
•
Molecular alignment metallic alloys
• Integrated circuits
•
Microminiaturization of logic boards
• HARP (High Altitude
Research Project)
• Project
Horizon
(moon base)
• Portable atomic generators (ion propulsion
drive)
• Irradiated food
• Third brain guidance
systems (EBE headbands)
• Particle beams (“Star Wars”
antimissile energy weapons)
• Electromagnetic propulsion
systems
• Depleted uranium projectiles
For each of the items on my list, General Trudeau went into his human resources file and found the names of scientists working on government defense projects or in allied research projects at universities where I could turn for advice and some consultation. I wasn’t surprised to see Wernher von Braun turn up under every rocket propulsion issue. von Braun had gone on record in 1959 by announcing that the U.S. military had acquired a new technology as a result of top secret research in unidentified flying objects. Nor was I surprised to sec John von Neumann’s name next to the mention of the strange looking silver imprinted silicon wafers that I thought looked like elliptical shaped crackers.
“If these are what I think they might be, “ General Trudeau said, “printed circuitry, there’s only one person we can talk to. “
Dr. Robert Sarbacher was an especially important contact person on our list of scientists because he had worked on the Research and Development Board during the Eisenhower administration. Not only had Sarbacher been consulted by members of Admiral Hillenkoetter’s and General Vandenberg’s working group on UFOs during the 1950s, he was part of the original decision General Twining made to bring all of the Roswell debris back to Wright Field for preliminary examination before farming it out to the military research community.
As early as 1950, Sarbacher, commenting on the nature of the debris, said that he was sure the light and tough materials were being analyzed very carefully by government laboratories that had taken possession of the debris after the crash. Because he was already knowledgeable about the Roswell debris, Dr. Sarbacher was another obvious candidate for an Army R&D brain trust.
We
also listed Dr.
Wilbert Smith,
who, in a memo to the controller of telecommunications in November
1950, had urged the government of Canada to investigate the nature of
alien technology the United States had retrieved from crashed
extraterrestrial vehicles
and that was at that time being studied by Vannevar
Bush.
Dr. Smith, who had learned of the U.S. investigation from Sarbacher,
said that regardless whether UFOs fit into our belief system or not,
the fact was we had acquired them and it was important for us to
harvest the technology they contained. He implored the government to
make a substantial effort to utilize alien technology. General
Trudeau joked that although Dr. Smith knew that we had acquired
technology at Roswell, he didn’t really know what it was. “I
can’t wait to see his face when you open your briefcase in front of
him, Phil, “ the general said, thinking about how his old friend
had always wanted to know the specifics of what he had secreted away
in 1947.
Each
of these scientists had maintained existing relationships with any
number of defense contractors during the 1950s. General Trudeau also
had relationships with the army contractors who were developing new
weapons systems for the military within one part of the company while
another part was harvesting some of the same technology for consumer
products development. These were companies—Bell
Labs,
IBM,
Monsanto,
Dow,
General
Electric,
and Hughes
- that General Trudeau wanted to talk to about the list of
technological products that we’d compiled from our R&D Roswell
nut file.
“You
begin calling our scientist friends, “ General Trudeau announced.
“And make whatever appointments you want. “
“Where are
you going to be, General?” I asked.
“I’m going to be
taking some trips, too, “ he said. “First to the chief of staff
to make sure we have the discretionary budget we’re going to need.
Then to some of the people I want you to talk to once you have the
backing from the scientific community for the projects on your list.
“
“Where to first?” I asked.
“What do you like?”
the general shot right back to me.
“We’ve been working with
image intensifies for some time, “ I said. “We even got our hands
on devices the Germans were working on at the end of the war. “
“Well then, why don’t you make a very preliminary trip over
to Fort Belvoir,“ General Trudeau said.
“They’ve
had a night vision project in the works for the past ten years, but
it’s got nothing over what you have in your file. “
“I’ll
get over there first thing, “ I said.
“Yes, Phil, but you
get out of that uniform and into a real lawyer suit, “ the general
ordered. “And don’t take your staff car.“ He saw me raise my
eyebrows. “All you’re going to do is feed a project,“ Trudeau
continued, “that’s been under way since right after the war.
They’ve got stuff, but you’re going to give them a giant leap.
Once you’ve fed them, you’ll disappear and I’ll assign a night
vision project manager here to see the development through.“ I
prepared to leave his office.
“No
one will know, Phil, “ he said. “Just like you thought, the
Roswell night viewer will put a seed of an idea in someone’s mind
over at Fort Belvoir and it will become part of along project
history. It will disappear just like you into the history of the
product development. “
“Yes, sir, “ I said. I was
beginning to realize just how lonely this job could be.
“You
still have a suit that fits?” the general asked.
“I think
so,“ I answered. “Maybe what I wore over at the White House is a
little out of style, but it’ll pass.“
“Good luck, Phil, “
General Trudeau said. “Make sure no one knows where you’re going
and I’ll make sure you have all the budget you need. “
This was the beginning. I saluted, but the general just stuck out his hand and I shook it. We both realized in that moment, as we were striking out on our own, just how momentous this was about to become. A lieutenant general allocating money for his development budget and a lieutenant colonel looking for someone to develop an innocuous-looking eye shield an unknown GI had picked up out of the sand near a UFO crashed into a rock in the lonely desert outside of Roswell in a lightning storm fourteen years ago.
What
a pair we must have made.
No comments :
Post a Comment